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Abstract

A _nite element model of switching in polycrystalline ferroelastic ceramics is developed[ It is assumed that
a crystallite switches if the reduction in mechanically driven potential energy of the system exceeds a critical
value per unit volume of switching material[ Stress induced "i[e[ ferroelastic# switching is a change of
permanent strain in characteristic crystallographic directions[ Martensitic twinning is one example\ but the
strain response of ferroelectric materials has the same characteristics[ The model is suitable for representing
ferroelastic systems such as shape memory alloys and as a preliminary model for ferroelectric:ferroelastic
materials such as perovskite piezoelectrics[ In the simulations\ each crystallite is represented by a _nite
element and the crystallographic principal direction for each crystallite is assigned randomly[ Di}erent
critical values for the energy barrier to switching are selected to simulate stress vs strain hysteresis loops of
a ceramic lead lanthanum zirconate titanate "PLZT# at room temperature[ The measured stress versus strain
curves of polycrystalline ceramics designated PZT!A and PZT!B are also reproduced by the model[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Ferroelectric materials "Ja}e et al[\ 0860# such as lead zirconate titanate "PZT# and lead
lanthanum zirconate titanate "PLZT# experience a polarization switch at the unit cell level when a
su.ciently large electric _eld is applied in a direction orthogonal to the current poling[ This switch
involves the reorientation of the tetragonality "or other relevant reorientations for non!tetragonal
crystallographies# of the unit cell containing the electrical dipoles[ As a result\ there is a strain
change in general during repolarization and it follows that the material is also ferroelastic[ This
means that an appropriately oriented applied stress of su.cient magnitude will also induce the
strain change because it can also cause the reorientation of the tetragonality of the unit cells[

When stress alone drives the switching process\ no net polarization can be created because the

� Corresponding author[ Fax ] 7947827540 ^ e!mail ] rmcmÝecil[ucsb[edu



S[C[ Hwan`\ R[M[ McMeekin`:International Journal of Solids and Structures 25 "0888# 0430Ð04450431

dipoles randomly align in positive and negative directions[ Thus polarization can be destroyed by
stress but no created[ Consequently\ a polycrystalline ferroelectric sample with random initial
polarization in its domains will remain unpolarized after the application of stress alone[ As a
result\ an initially unpolarized polycrystalline ferroelectric ceramic can be treated as a purely
mechanical ferroelastic element with the e}ect of internal electric _elds and polarizations neglected[
This approach represents an approximate model for the deformation of ferroelectric polycrystals
subjected to stress alone because the local internal electric _elds and polarizations will have some
e}ect on the processes by which switches take place[ However\ it is a useful step to consider the
ferroelastic behavior alone in the modeling of the deformation of ferroelectric polycrystals subjected
to stress in the absence of electric _eld[

When considered as a purely ferroelastic material\ the behavior of ferroelectric polycrystals is
very similar to that of shape memory alloys "Duerig et al[\ 0889#[ In the latter case\ the process of
twinning and detwinning of the martensitic phase is analogous to the process of switching in
ferroelectric materials[ Parallels can also be drawn between behavior in ferroelectrics and stress
induced martensitic phase transformations in shape memory alloys and in other materials such as
zirconia "McMeeking and Evans\ 0871#[

It is of interest to model the behavior of these materials at the mesoscopic level[ That is\ models
for the switching of individual domains or crystallites can be used in conjunction with analysis of
the internal mechanical stresses and deformations which are induced as a result of those switches[
In such a way\ models for the average ferroelastic behavior of polycrystalline aggregates can be
developed[ These models can be used to predict the deformation of polycrystalline aggregates in
response to completely general states of stress[ Consequently\ they can give insights additional to
those provided by experiments and can provide guidance in the development of concise constitutive
laws for use in\ say\ design calculations for ferroelectrics and shape memory alloys[ Initial work
using elementary approximate methods has been carried out "Chan and Hagood\ 0883 ^ Hwang et
al[\ 0884 ^ Hwang and McMeeking\ 0887#[ More exact methods can be introduced\ such as treat!
ments using the _nite element method and that is the purpose of this paper and another in which
we have treated the purely electrical e}ects of ferroelectric switching "Hwang and McMeeking\
0887#[

The _nite element method used for this paper treats each crystallite as an element with uniform
crystallography\ with the tetragonal orientation for each element selected randomly[ When swit!
ching occurs for a given element\ the tetragonal axis changes to a di}erent permitted direction[
The governing equations of compatibility and mechanical equilibrium are enforced through the
_nite element equations[ Thus\ the e}ect of local incompatibilities among crystallites is allowed
for and local stresses arising as a result are computed[ This is signi_cant because a major drawback
in a high!strain actuator application of ferroelectric materials is microcracking "i[e[ grain size
cracks forming at the grain boundaries# and debonding at the metal electrodeÐceramic layer
interface "Aburatani et al[\ 0883#\ both caused by high local stresses[ The mechanism of cracking
is due to domain reorientations "Jiang et al[\ 0883 ^ Wang et al[\ 0885#[ The _nite element model is
developed to be also useful as a tool for understanding material degradation mechanisms in fatigue
and fracture "Jiang et al[\ 0883 ^ Wang et al[\ 0885 ^ Park and Sun\ 0884#[

It is assumed that each crystallite in the ceramic is tetragonal "e[g[ PZT# with three possible
orthogonal orientations for the c!axis[ Only displacement and strain are computed in this paper
with no electric _eld or electrical polarization involved[ The _nite element calculations are carried
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out with a large number of crystallites having initially random tetragonality[ Each _nite element
is a crystallite which is assumed to be a single domain\ or set of cooperating domains\ switching
all at once when the transformation takes place[ The starting point for the simulations is therefore
one of zero macroscopic strain[ The mechanical load is then gradually increased and later reversed[
An individual crystallite is allowed to switch when the potential energy of the system will reduce
by a critical amount as a result of that switch[ The reduction of potential energy is considered
to be necessary to overcome barriers opposing the transformation[ The behavior is followed
incrementally by permitting the switching of the most favored element in each step[ The load is
kept constant after each step until all the energetically favorable elements switch[ After all such
elements have switched\ the load is then incremented once more[

The parameters of the model are chosen from empirical constants of a lead lanthanum zirconate
titanate "PLZT 7:54:24# ceramic[ Several simulated results with selected values for the energy
barrier to switching are presented[ Among the results\ the best _t compared to an experimental
measurement of a stress vs longitudinal strain curve is obtained[ Then\ new parameters are chosen
to reproduce the stress vs strain curves of hard PZT!A and soft PZT!B ceramics as measured by
Cao and Evans "0882#[

1[ Governing equations

A ferroelastic ceramic is considered to be purely mechanical without body force[ Tractions are
speci_ed on an arbitrary part ST of the external perimeter S of the body[ For a volume V\
equilibrium requires

1sij:1xi � 9 "0#

where s is the mechanical stress and x is position[ Continuity of stress at crystallite boundaries
requires that

ni ð=sij =Ł � 9 "1#

where n is the unit normal to the interface and the symbol ð= =Ł denotes a jump of the quantity
within[ The elasticity law for a given crystallite is

sij � Cijkl"ekl−es
kl# "2#

where C is the elastic tensor\ e is the strain\ and es is the tensor of spontaneous strain for that
crystallite[ The datum for the spontaneous strain is taken to be a cubic state having the same
volume[ The strain tensor e is de_ned by

eij �"1ui:1xj¦1uj:1xi#:1 "3#

where u is the displacement vector[
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2[ Energy relationships and switching criterion

The potential energy of a ferroelastic ceramic is given by "McMeeking and Hwang\ 0886#

VðuŁ �
0
1 gv

"eij−es
ij#Cijkl"ekl−es

kl# dV−gST

Tiui dS "4#

The _rst integral is the recoverable elastic energy stored in the material and the second is the
potential energy of the traction T speci_ed on the part ST of the boundary S[ A crystallite is
assumed to switch when the resulting change of the potential energy of the ceramic DVðuŁ is equal
to or larger than the energy barrier for the switch[ Thus\ the switching criterion is given by

DVðuŁ¦VcDcc ¾ 9 "5#

where Dcc is the energy barrier per unit volume of a crystallite which must be overcome upon
switching[ Only the most favorable crystallite is allowed to switch at any stage and only one is
permitted to switch at any time[ All other crystallites "particularly neighboring ones# elastically
accommodate the switch at that instant[ This is\ perhaps\ unrealistic since multiple domains could\
in principle\ switch simultaneously[ However\ this model has been adopted as a _rst attempt
given that consideration of multiple switching is computationally impractical since too many
combinations have to be considered[

When a switch take place\ the imposed traction T is held _xed\ but the spontaneous strain of
the crystalline changes to a new value\ es¦Des[ Upon switching\ the magnitude of the spontaneous
strain\ es\ remains the same whereas its principal directions change\ e}ectively to align the crystallite
tetragonality as closely as possible to the internal stress in the crystallite[ Due to the change of the
spontaneous strain and the elastic adjustments to the switch\ the strain of the ceramic becomes a
new value e¦De and correspondingly the displacement becomes u¦Du[ The change of the energy
in the system DVðuŁ is given by

DVðuŁ � gV

"eij−es
ij#Cijkl"Dekl−Des

kl# dV

¦
0
1 gV

"Deij−Des
ij#Cijkl"Dekl−Des

kl# dV−gST

TiDui dS "6#

where it is assumed that the elastic moduli are una}ected by the switch tetragonality[ This is not
the most general situation\ but is used as an initial model[ Since the stress

skl � Cijkl"eij−es
ij# "7#

in V is in equilibrium with the traction T everywhere on S and the displacements Du are zero on
S−ST and are compatible with the strain De in V\ virtual work provides

gV

"eij−es
ij#CijklDekl dV � gST

TiDui dS "8#

As a result\ eqn "6# simpli_es to
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DVðuŁ � −gV

Des
ijsij dV¦gV 0

0
1

DeijCijklDekl−Des
ijCijklDekl¦

0
1

Des
ijCijklDes

kl1 dV "09#

The stress increment

Dskl � Cijkl"Deij−Des
ij# "00#

in V is in equilibrium with the increment of traction DT on S[ The strain increment De in V is
compatible with the displacement increment Du on S[ The traction increment is zero on ST whereas
the displacement increment is zero on S−ST[ Therefore\ virtual work gives

gV

"Deij−Des
ij#CijklDekl dV � 9 "01#

so that _nally

DVðuŁ � −gV

Des
ijsij dV¦

0
1 gV

Des
ijCijklDes

kl dV−
0
1 gV

DeijCijklDekl dV "02#

3[ Finite element method

The basic _eld equations for a _nite element method can be developed from the principle of
virtual work

gV

deijsij dV � gS

duiTi dS "03#

where d"=# indicates a virtual variation[ The boundary conditions are

nisij � T9
j on ST

ui � u9
i on Su "04#

where T9 is given on ST and u9 is given on Su with Su¦ST � S[ In a matrix notation\ the displacement
components of u can be written in terms of _nite element interpolations as

8
u0

u1

u2
9� ðNŁ"uN# "05#

where the matrix ðN Ł contains interpolation functions and the vector "uN# contains the dis!
placements for all the nodal points in the _nite element mesh "Cook et al[\ 0878#[ The strain for
each element in "e# is given in a column vector as

"e00 e11 e22 1e12 1e02 1e01#T � "e# � ðBŁ"uN# "06#

where the interpolation matrix ðBŁ results from di}erentiation of ðN Ł[ In discretized form\ eqn "03#
becomes
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gV

ðBŁT"s# dV � gS

ðN ŁT"T# dS "07#

where "s# is a column vector containing stress components in the same order as in "e#\ "T# is "T0

T1 T2#T and the superscript T stands for the transpose of a matrix or vector[ The requirement that
eqn "03# must be true for all virtual variations of nodal displacements has been used to eliminate
"duN#[ Use of the constitutive law eqn "2# then gives the _nite element equations

ðKŁ"uN# � "F#¦"F s# "08#

where ðKŁ is the sti}ness matrix\ "F# is the nodal load due to the tractions T on S\ and "F s# is the
additional nodal load due to the spontaneous strain[ The sti}ness matrix ðKŁ and column vectors
"F# and "F s# are given as

ðK Ł � gV

ðBŁTðC Ł ðBŁ dV

"F# � gS

ðN ŁT"T# dS

"F s# � gV

ðBŁTðC Ł"es# dV "19#

where ðC Ł is the matrix of linear elastic constants such that

"s# � ðC Ł""e#−"es## "10#

In discretized form\ the change of potential energy due to switching from eqn "02# is

DVðuŁ � −gV

"Des#T"s# dV¦
0
1 gV

"Des#TðC Ł"Des# dV−
0
1

"DuN#TðK Ł"DuN# "11#

The increments of nodal displacements "DuN# caused by the switch must satisfy the _nite element
equations

ðK Ł"DuN# � "DF s# "12#

which are modi_ed for incremental form from eqn "08#[ Since the tractions are held _xed during
a switch\ only the nodal force increments from the switching term appear on the right hand side
of eqn "12#[ This term is given from eqn "19# by

"DF s# � gV

ðBŁTðC Ł"Des# dV "13#

3[0[ Numerical simulation

The model for the ferroelastic switching behavior is implemented in a _nite element mesh of
many hundreds of crystallites[ Each _nite element is a single crystallite having uniform spontaneous
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Fig[ 0[ A schematic diagram of the cubic mesh of eight elements[ Each cubic element represents one crystallite and has
its own principal crystallographic directions[

strain[ A cubic mesh of elements is used for each simulation with each element itself being a cube\
as depicted for eight elements in Fig[ 0[ We use eight!node cubic elements having a node at each
corner "Cook et al[\ 0878#[ Parallel to the coordinate direction\ the elements use a linear interp!
olation of each displacement component\ so that the components have a trilinear dependence on
position[ A random number generator is used to create the principal axes of the initial tetragonal
unit cell of each crystallite[ The magnitude of the spontaneous strain of a crystallite parallel to
the c!axis of the unit cell is e9 � ð"c−a9#:a9Ł[ The strain perpendicular to the c!axis is
−0

1
eo � ð"a−ao#:aoŁ\ where a9 is the lattice parameter of a cubic cell having the same volume as

the tetragonal cell[ In addition\ c is the lattice parameter of the tetragonal unit cell parallel to the
tetragonal direction and a is the lattice parameter perpendicular to the c!axis[ The components of
the spontaneous strain of each crystallite are calculated in a _xed Cartesian coordinate system
common to the ceramic[ These components will be referred to throughout the discussion below[

The macroscopic strain of the aggregate is computed as the volume average of the strain in the
crystallites[ Since each crystallite has the same volume Vc\ the volume average can be computed as
a simple arithmetic average of the strain components over all crystallites[ Thus\ the initial average
remanent strain of the polycrystal is zero "or nearly zero because the _nite number of crystallites
involved in a given simulation can have a nonzero average from the random number generation#[
Similarly\ the average linear contribution to the strain e is zero initially since the imposed traction
is zero initially[

The boundary conditions in eqn "04# are imposed such that the displacement u2 is _xed at zero
for all nodal points on the bottom surface of the cubic mesh as shown in Fig[ 0 where the x2 axis
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is considered to be vertical and x0 and x1 de_ne the horizontal plane[ The displacement u0 is _xed
at zero for all points along the lower left edge of the cube and u1 is zero along the lower front edge[
All these nodal points where the displacement is _xed at zero compose Su[ As shown in Fig[ 0\ the
traction is imposed on the top surface of the cube as a uniform value T2 with T0 and T1 equal to
zero everywhere except on Su[ The non!zero traction T2 on the top surface is introduced gradually
from zero initially[ After a small increment of the traction\ each crystallite is checked to see if it
has met the switching criterion[ The expression for DVðuŁ given by eqn "11# is substituted into the
switching criterion\ eqn "5#\ and is modi_ed in the form ]

"Des#T"s#−
0
1

"Des#TðC Ł"Des#¦
0

1Vc

"DF s#TðK Ł−0"DF s# −
2
1

s9e9 "14#

where the term Dcc is replaced by 2
1
s9e9 with s9 being a critical stress with the magnitude of an

e}ective uniaxial coercive stress for a single crystallite parallel to the principal crystallographic
directions[ The third term on the left hand side of eqn "14# is obtained by combining eqn "11# and
eqn "12#[ The inverse sti}ness matrix is computed once only and stored since it does not change
during the simulation[ Note that ðK Ł−0 must be conditioned\ as must be ðK Ł in eqn "08# and "12#\
to account for displacement boundary conditions imposed on Su "Cook et al[\ 0878#[ This is a
trivial step since all boundary conditions on Su involve zero values of displacement components[
The switching criterion is evaluated at the centroid of an element with centroidal values of strain\
spontaneous strain and stress taken to represent the element as a whole[ Since switching is
considered for one element at a time\ the _rst two terms on the left hand side of eqn "14# are
computed only for the element under consideration for switching[ For each crystallite\ the tetra!
gonal symmetry dictates two possible ferroelastic "or 89># switches[ At any given stage\ the switch
which is taken to occur for an element is that associated with the greatest value of the left hand
side of eqn "14#[ After all possible switches have been checked for satisfaction of eqn "14#\ the
element for which the left hand side of eqn "14# exceeds the right hand side by the greatest amount
is identi_ed as the one element which will switch[

After a switch has been identi_ed and made\ a new load "F s# in eqn "08# is computed by
reassembling the spontaneous strains of all the crystallites in the _nite element mesh[ Solution of
eqn "08# with the new "F s# gives new nodal displacement values "uN#\ and then the stress tensor
"s# in each element is re!evaluated[ With "uN# and "s# updated\ another permitted switch associ!
ated with the greatest value of the left hand side of eqn "14# is sought without change of the
prescribed traction[ This process is repeated until no more elements will switch[ The macroscopic
strain for the polycrystal is then computed by averaging the strain over all elements[ The traction
is then incremented and eqn "14# is used to select further switches[ The increments of the traction
are chosen so that only one crystallite will tend to switch at any given stage[

It should be noted that the crystallites in their initial state with randomly generated tetragonality
have spontaneous strain[ This causes incompatibilities which generate residual stress in the poly!
crystal at the outset of the simulation[ The _rst step is to calculate these residual stresses with zero
applied load which requires a solution of eqn "08# with "F# equal to zero[ The possibility exists
that these residual stresses will drive switching by themselves[ To allow for this\ switches are
investigated at zero applied load ""F# � 9# and are allowed to continue until no more occur
spontaneously[ The _nal stable annealed state is taken to be the true initial con_guration for



S[C[ Hwan`\ R[M[ McMeekin`:International Journal of Solids and Structures 25 "0888# 0430Ð0445 0438

simulations which are then carried out with an applied load increased gradually from zero[
Therefore\ the initial con_guration of the polycrystalline aggregate at zero load for these simu!
lations has residual stress present in them but each crystallite is in a stable state until external load
is applied[

The elastic compliance of a single crystallite in general is anisotropic with the c!axis orientation
determining the values[ Generally\ there are insu.cient experimental data for moduli values of
7:54:24 PLZT single crystallites[ On the other hand\ Young|s modulus along the poling axis and
Poisson|s ratio n relative to the same orientation in a poled polycrystalline ceramic are known[
Instead of using those values\ however\ we approximate the elastic tensor C of the crystallites to
be isotropic ^

Cijkl �
Yn

"0¦n#"0−1n#
dijdkl¦

Y
1"0¦n#

"dikdjl¦dildjk# "15#

where Y is Young|s modulus[ Values for Y and n are chosen to correspond to polycrystalline
values[

For hard PZT!A and soft PZT!B ceramics "Cao and Evans\ 0882#\ however\ the modulus in the
poled direction\ Poisson|s ratio\ and the modulus perpendicular to the poled axis are known[ From
these data\ single crystallite anisotropic elasticity could be estimated to agree with the measured
values for the polycrystalline ceramic[ If single crystallite anisotropic elasticities were used\ the
sti}ness matrix ðK Ł would have to be reassembled after each switch because the c!axis and one of
the a!axis of the switching crystallite will be interchanged\ thereby changing C in a _xed coordinate
system[ Also the inverse of the matrix ðK Ł−0 would have to be re!evaluated for the switching
criterion after each switch[ Inverting the matrix ðK Ł is computationally burdensome[ Therefore\ to
avoid immensely increased computing time\ the elastic tensor C of all crystallites in both PZT
ceramics are approximated to be transversely isotropic with respect to the direction of applied
stress[ Then\ the tensor C is _xed for every crystallite regardless the direction of its c!axis and no
recomputation of ðK Ł or ðK Ł−0 is necessary[ The experimental poling direction modulus "Cao and
Evans\ 0882# is used for the computational modulus parallel to the applied stress direction\ with
the experimental Poisson|s ratio and transverse modulus values relative to the poling direction
"Cao and Evans\ 0882# used for the computational Poisson|s ratio and transverse moduli relative
to the applied stress axis[

4[ Results

All the calculations presented in this paper are done with an identical set of 0999 crystallites
with random c!axis orientation[ The crystallites\ each one represented by a _nite element\ are in a
09×09×09 cubic array with cube edges parallel to the Cartesian coordinate directions[ The
numerical results for a simulation for a given random set are mostly within 09) of the values for
other simulations abased on a di}erent random set of 0999 elements[

A polycrystalline 7:54:24 PLZT ceramic of 09 mm cube was used to obtain experimental data
"Hwang et al[\ 0884#[ The initial unpoled state of the PLZT was used as the zero strain state[
Several cycles of electric _eld "29[7 MV:m# were applied to the sample until a repeatable electric
displacement vs electric _eld hysteresis loop was obtained[ After the sample was poled\ the _eld
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was then reduced to zero\ and compressive stress was applied[ The resulting stressÐstrain curve is
used for comparison with the numerical results[ The experimental methods used for PZT ceramics
were identical to those for PLZT "Hwang et al[\ 0884 ^ Cao and Evans\ 0882#[ The only di}erence
was that the PLZT was poled in the laboratory whereas poled PZTs were bought from a manu!
facturer[ The sample size of the PZTs was 5×7×01 mm[ In the experiments\ the measured value
for the modulus in the poling direction is the value of the initial elastic slope of the stress vs axial
strain curve when the ceramic is subjected to compressive stress applied along the poled axis ^ the
measured transverse modulus is the value of the initial slope of the stress vs axial strain curve
under compressive stress applied perpendicular to the poled axis ^ the measured Poisson|s ratio is
the negative of the quotient of the increment of transverse strain and the increment of axial strain
under compressive stress applied along the poling axis[

4[0[ Simulation of PLZT ceramic

The parameters used are experimentally determined values\ e9 � 9[99148 and Y � 57 GPa
"Hwang et al[\ 0884#[ The measured Poisson|s ratio value is 9[4\ indicating incompressibility[ To
avoid a singular _nite element sti}ness\ n is chosen instead to be 9[37[ Mesh locking "Cook et al[\
0878# is avoided by one point numerical integration of the sti}ness[ The critical stress\ s9\ is selected
to be 44\ 04\ or 0 MPa[

Figure 1 shows the simulation stress versus longitudinal strain loop for s9 equal to 44 MPa[ The
average strain is zero initially because the crystallites have random states of tetragonality[ As the
applied stress is increased from zero\ the strain increases linearly due to elasticity\ and then changes
its slope signi_cantly at 39 MPa as crystallites switch[ The remanent strain reaches its maximum
at a stress of 049 MPa[ At this stage\ all possible switching has taken place and the c!axis of all
elements are aligned as closely as possible to the applied stress direction[ Increase of stress above
049 MPa causes only further linear elastic deformation[ When the stress is decreased\ the strain
decreases nearly linearly[ At a coercive stress of −099 MPa\ nonlinear deformation takes place as
reverse switching occurs[ The remanent strain continues to decrease until it saturates at a stress of

Fig[ 1[ Simulated 7:54:24 PLZT axial stress vs axial strain hysteresis loops for an e}ective stress s9 � 44 MPa[



S[C[ Hwan`\ R[M[ McMeekin`:International Journal of Solids and Structures 25 "0888# 0430Ð0445 0440

Fig[ 2[ Simulated 7:54:24 PLZT axial stress vs axial strain hysteresis loops for an e}ective stress s9 � 04 MPa[

−199 MPa[ At this stage\ all possible reverse switching has taken place and the c!axis of all
elements are aligned as far as possible away from the applied stress direction[ Application of
further compressive stress causes only linear elastic deformation[ The imposed stress is then
increased[ At a stress of 69 MPa\ the ceramic starts deforming nonlinearly back to its elongated
state\ and the deformation continues until the remanent strain again saturates[ Further cycling of
the stress will cause a repeat of the same loop[ When the applied stress is reduced to zero\ there is
a remanent strain[ It should be noted that the change of the slope near the coercive stress in tension
is more gradual than that in compression[ Also the absolute magnitude of the coercive stress for
the repetitive loop is less for tension "74 MPa# than for compression "−099 MPa#[

Figure 2 shows the stress vs longitudinal strain hysteresis loop for s9 equal to 04 MPa[ The
features are similar to Fig[ 1[ The initial switching "or nonlinear deformation# from the random
state occurs at 19 MPa\ and the magnitude of the coercive stress under compression drops to 34
MPa\ a substantial change from the corresponding value of 099 MPa in Fig[ 1[ Figure 3 shows the
loop for s9 equal to 0 MPa\ which can be considered as a nominally zero critical stress[ The low
s9 allows the nonlinear deformation in the initial random state to start at nearly zero stress[ Once
the switching strain saturates\ however\ the constraint among elements ði[e[ the second and third
terms on the left hand side of the switching criterion\ eqn "14#Ł plays the dominant role in
determining when switching takes place\ whereas the right hand side is negligible[ Physically\ a
crystallite in the polycrystal _nds it di.cult to undergo switching due to the presence of the
surrounding sti} crystallites and the inherent barrier to switching is unimportant[

In Fig[ 3\ the saturated remanent strain at zero stress after a complete cycle of stress reaches
only 89) of the corresponding strains in Figs 1 and 2 even though the initial random orientation
of the crystallites and the spontaneous strain of crystallites are exactly the same for all these
simulations[ The reason for this is that a low critical stress "s9 � 0 MPa# as used in Fig[ 3 cannot
keep the crystallite spontaneous strain _xed after removal of the load[ Some crystallites switch to
_nd the lowest energy state for the system by responding to the constraints due to the presence of
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Fig[ 3[ Simulated 7:54:24 PLZT axial stress vs axial strain hysteresis loops for an e}ective stress s9 � 0 MPa[

the surrounding sti} crystallites ^ this adjustment is easier when the energy barrier is low[ In
addition\ it was found that the remanent strain in the unpoled state varied up to 39) in terms of
the saturated remanent strain for other simulations based on di}erent random sets of 0999
crystallites[ This behavior seems to be due to the unstable nature of the residual state when the
barrier to switching is low[ On the other hand\ once strain saturate\ and the stress is high\ results
for a given random set are within 09) of the values from di}erent random sets even when the
energy barrier is low[ In addition\ when the random crystallites are initially created\ the remanent
strain is well below 0) of the saturation value[ As noted above\ the crystallites are allowed to
anneal by switching at zero load to _nd their minimum energy state in the system and in these
simulations the strain then usually decreases below zero[ The deviation from the zero strain in the
unstressed initial state in this process is large when the e}ective stress s9 is low "i[e[ 0 MPa#[

Figure 4 shows the axial stress vs longitudinal strain for PLZT with the experiment represented
by the thin line and the calculation represented by the bold line[ The calculated curve is identical
to that in Fig[ 3 with s9 � 0 MPa\ but only the segment in the compressive stress stage is presented
in Fig[ 4[ The simulation shows reasonable agreement with the experiments except that the gradual
depolarization of the experimental curve is not matched well[ After stress is applied and removed\
the remanent strain of the simulated curve is somewhat larger than that of the measured curve[
This mismatch suggests that the correct crystallite spontaneous strains have not been used in the
simulation[ Indeed\ the version of PLZT used in the experiments has a signi_cant amount of
rhombohedral material in it\ which may explain the discrepancy "Hwang et al[\ 0887#[ Another
source for the error could be the neglect of crystallite anisotropic elasticities[

The experimental data show also that switching occurs gradually at low stress[ This phenomenon
does not appear in the _nite element model because of a strong constraint e}ect which inhibits
switching at _rst[ However\ it is possible that this de_ciency is due to the small size of the simulation
"0999 elements#[ In a larger model\ some elements would be favorably disposed to switching
because of the in~uence of near neighbors and this might reproduce the initial switching in the
experimental curve of Fig[ 4[
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Fig[ 4[ Simulated 7:54:24 PLZT axial stress vs axial strain curves in compression after nonlinear elongation[ The
simulated curve has an e}ective stress s9 � 0 MPa[

4[1[ Simulation of PZT ceramics

The simulation is _tted also to experimental data for polycrystalline PZT ceramics[ It is found
that a best _t to the stress vs strain curves of hard PZT!A and soft PZT!B "Cao and Evans\
0882# can be obtained with s9 � 0 MPa and e9 � 9[9797[ The zero strain datum of the original
experimental data corresponds to the poled state "Cao and Evans\ 0882#\ whereas the zero strain
corresponds to the initial unpoled state in all our previous results[ Thus\ 9[27) strain was added
to the experimental data to match the zero strain to that of the simulation[ This is an arbitrary
step since the strain of the poled PZT samples relative to the unpoled state is unknown[ Other
values used for parameters are 022 GPa for the modulus parallel to the poling axis\ 71 GPa for
the modulus transverse to the poling direction\ and 9[3 for Poisson|s ratio for PZT!A and 022 GPa
"poling modulus#\ 53 GPa "transverse modulus#\ and 9[3 "Poisson|s ratio# for PZT!B[ It is notable
that all parameters with the exception of the transverse modulus are the same for simulating both
hard and soft PZT ceramics[ The poling modulus has been chosen to provide good agreement
between the simulations and the experiments in the linear response regime[ One complete axial
stress vs strain loop each for PZT!A and PZT!B is generated\ but only the part of the curve under
compression is presented[

Figure 5"a# shows the simulated and measured stress vs strain curves for hard PZT!A ceramic
"Cao and Evans\ 0882# and Fig[ 5"b# shows the stress vs strain curves for soft PZT!B ceramic "Cao
and Evans\ 0882#[ Both simulations show generally good agreement with the experiments[ As with
the simulation for PLZT\ the gradual process of switching in the early stage of the stressÐstrain
curve is absent in the calculated curves[ Also the simulation does not show any signi_cant strain
recovery as observed in the experiments[ "Note that in experiments\ crystallites in a hard ceramic
are more likely to switch back to their previous orientations than those soft materials[# However\
the enlargement of the transverse modulus from 53 GPa for PZT!B to 71 GPa for PZT!A increased
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Fig[ 5[ Simulated and measured PZT axial stress vs axial strain curves in compression after nonlinear elongation[ The
experimental curves are for a material which was electrically poled[ The simulated curves are both for an e}ective stress
s9 � 0 MPa[ "A# Hard PZT!A[ "b# Soft PZT!B[

the coercive stress level by approximately 09 MPa[ Other than this di}erence in the coercive stress
level\ both simulations are similar to each other[

5[ Discussion

In these simulations\ the signi_cant di}erences between the critical stress value s9 in the com!
putations and the coercive stress measured in experiments is due to the presence of the second and
third terms on the left hand side of eqn "14#[ If the material were a single crystallite\ the third term
on the left hand side of eqn "14# would be zero\ and the single crystallite would switch at or near
the critical stress level[ Since the simulations agree best with the experiments when s9 � 0 MPa\ it
can be deduced that the inherent energy barrier to switching in crystallites is very low[ The third
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term on the left hand side of eqn "14# is present due to constraint arising from the interaction with
neighboring crystallites[ This e}ectively increases the energy barrier for a switch in a ceramic[
Switching in an unpoled polycrystal initiates relatively easily at low stress "see Figs 1Ð3# indicating
that the constraint among randomly aligned crystallites is modest[ The more severe constraint due
to surrounding crystallites comes into e}ect after nonlinear deformation has been induced and the
crystallites have been aligned as much as possible[ The reason for this is that the near alignment
of the c!axis of the crystallites makes it more di.cult to switch the _rst crystallite out of the aligned
con_guration[ However\ after one crystallite is switched\ the constraint on the next crystallite to
switch is reduced somewhat[ Thus\ the constraint diminishes steadily as switching proceeds[ The
result is the rather abrupt transition "i[e[ the nearly perfectly plastic behavior# in the simulations
at the e}ective coercive stress[

In principle\ it would be possible to enlarge the simulation and carry out calculations for many
thousands or tens of thousands of crystallites[ However\ the approach described here involves a
computational e}ort which increases approximately with n1 where n is the number of crystallites
in the simulation[ This occurs because the procedure requires each crystallite to be checked for its
tendency to switch at each incremental step of the calculation[ Such an escalation of computational
burden makes this scheme unattractive for larger scale simulations such as the behavior of crys!
tallites near a crack tip under strain[ However\ the results of calculations such as those described
in this appear can be used to guide the development of macroscopic constitutive laws for the
behavior of polycrystalline aggregates[ Such macroscopic constitutive laws are more likely to be
useful for the computational modeling of problems such as the behavior at crack tips[

6[ Conclusions

A _nite element method with each crystallite represented by an element which transforms
completely upon switching can be used to model ferroelastic behavior of polycrystalline aggregates[
A criterion in which the reduction of the system total potential energy is equal to or greater than
an energy barrier is found to be suitable for determining when individual crystallites switch[ The
energy barrier to switching required to match the simulations to experimental data for PLZT and
PZT is found to be very low\ equivalent to a coercive stress of 0 MPa for a single crystal sample[
Most of the resistance to switching in a poled polycrystal in the simulations is then found to be
due to elastic constraints among the residually stressed crystallites[ The simulation successfully
models PLZT and PZT with the di}erence between these two materials being due to the spon!
taneous strain magnitude and elastic anisotropy rather than the size of the barrier to switching[
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